torchvision

PyTorch provides a package called torchvision to load and prepare dataset.

Transforms

We compose a sequence of transformation to pre-process the image:

import torchvision.transforms as transforms

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

Compose creates a series of transformation to prepare the dataset. Torchvision reads datasets into PILImage (Python imaging format). ToTensor converts the PIL Image from range [0, 255] to a FloatTensor of shape (C x H x W) with range [0.0, 1.0]. We then renormalize the input to [-1, 1] based on the following formula with .

Dataset and DataLoader

Dataset read and transform a datapoint in a dataset. Since we often read datapoints in batches, we use DataLoader to shuffle and batch data. Then it load the data in parallel using multiprocessing workers. .datasets.CIFAR10 below is responsible for loading the CIFAR datapoint and transform it.

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

Here is the source code again to load CIFAR10 dataset:

import torch
import torchvision
import torchvision.transforms as transforms


transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)
										 
...

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    # Training from the training dataset sample
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        inputs, labels = Variable(inputs), Variable(labels)

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

Loading csv file

We use the Python package Panda to load the csv file.

The original file has the following format: (image name, 68 landmarks - each landmark has a x, y coordinates)

landmarks_frame = pd.read_csv('faces/face_landmarks.csv')

n = 65
img_name = landmarks_frame.iloc[n, 0]
landmarks = landmarks_frame.iloc[n, 1:].as_matrix()
landmarks = landmarks.astype('float').reshape(-1, 2)

torch.utils.data.Dataset

torch.utils.data.Dataset is an abstract class implementation for a dataset. We can inherit from it to create a custom Dataset by overriding:

  • __len__ so that len(dataset) returns the size of the dataset
  • __getitem__ such that dataset[i] can return the ith datapoint

Here is a custom Dataset. We will read the CSV file into memory when the Dataset is created. But to save memory, we read the image only when it is needed in __getitem__.

class FaceLandmarksDataset(Dataset):
    """Face Landmarks dataset."""

    def __init__(self, csv_file, root_dir, transform=None):
        """
        Args:
            csv_file (string): Path to the csv file with annotations.
            root_dir (string): Directory with all the images.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """
        self.landmarks_frame = pd.read_csv(csv_file)
        self.root_dir = root_dir
        self.transform = transform

    def __len__(self):
        return len(self.landmarks_frame)

    def __getitem__(self, idx):
        img_name = os.path.join(self.root_dir,
                                self.landmarks_frame.iloc[idx, 0])
        image = io.imread(img_name)
        landmarks = self.landmarks_frame.iloc[idx, 1:].as_matrix()
        landmarks = landmarks.astype('float').reshape(-1, 2)
        sample = {'image': image, 'landmarks': landmarks}

        if self.transform:
            sample = self.transform(sample)

        return sample

Datapoint can be accessed throug the Dataset:

face_dataset = FaceLandmarksDataset(csv_file='faces/face_landmarks.csv',
                                    root_dir='faces/')

for i in range(len(face_dataset)):
    sample = face_dataset[i]
	
    print(i, sample['image'].shape, sample['landmarks'].shape)

    ax = plt.subplot(1, 4, i + 1)
    plt.tight_layout()
    ax.set_title('Sample #{}'.format(i))
    ax.axis('off')
    show_landmarks(**sample)

    if i == 3:
        plt.show()
        break

Transforms images

Here is another example in applying cropping, image flipping and scaling to pre-process image:

data_transforms = {
    'train': transforms.Compose([
        transforms.RandomSizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Scale(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
                  for x in ['train', 'val']}
				  
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

Custom transform

We can build custom transformation:

class Rescale(object):
    """Rescale the image in a sample to a given size.
    """

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        self.output_size = output_size

    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']

        h, w = image.shape[:2]
        if isinstance(self.output_size, int):
            if h > w:
                new_h, new_w = self.output_size * h / w, self.output_size
            else:
                new_h, new_w = self.output_size, self.output_size * w / h
        else:
            new_h, new_w = self.output_size

        new_h, new_w = int(new_h), int(new_w)

        img = transform.resize(image, (new_h, new_w))

        # h and w are swapped for landmarks because for images,
        # x and y axes are axis 1 and 0 respectively
        landmarks = landmarks * [new_w / w, new_h / h]

        return {'image': img, 'landmarks': landmarks}


class RandomCrop(object):
    """Crop randomly the image in a sample.
    """

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            assert len(output_size) == 2
            self.output_size = output_size

    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']

        h, w = image.shape[:2]
        new_h, new_w = self.output_size

        top = np.random.randint(0, h - new_h)
        left = np.random.randint(0, w - new_w)

        image = image[top: top + new_h,
                      left: left + new_w]

        landmarks = landmarks - [left, top]

        return {'image': image, 'landmarks': landmarks}


class ToTensor(object):
    """Convert ndarrays in sample to Tensors."""

    def __call__(self, sample):
        image, landmarks = sample['image'], sample['landmarks']
 
        # swap color axis because
        # numpy image: H x W x C
        # torch image: C X H X W
        image = image.transpose((2, 0, 1))
        return {'image': torch.from_numpy(image),
                'landmarks': torch.from_numpy(landmarks)}


scale = Rescale(256)
crop = RandomCrop(128)
composed = transforms.Compose([Rescale(256),
                               RandomCrop(224)])
							   

Apply some transformation:

# Apply each of the above transforms on sample.
fig = plt.figure()
sample = face_dataset[65]
for i, tsfrm in enumerate([scale, crop, composed]):
    transformed_sample = tsfrm(sample)

    ax = plt.subplot(1, 3, i + 1)
    plt.tight_layout()
    ax.set_title(type(tsfrm).__name__)
    show_landmarks(**transformed_sample)

plt.show()

Create a dataset with custom transformation and display the transformation:

transformed_dataset = FaceLandmarksDataset(csv_file='faces/face_landmarks.csv',
                                           root_dir='faces/',
                                           transform=transforms.Compose([
                                               Rescale(256),
                                               RandomCrop(224),
                                               ToTensor()
                                           ]))
										   

for i in range(len(transformed_dataset)):
    sample = transformed_dataset[i]

    print(i, sample['image'].size(), sample['landmarks'].size())

    if i == 3:
        break										   

Here we use a data loader to load the samples:

dataloader = DataLoader(transformed_dataset, batch_size=4,
                        shuffle=True, num_workers=4)


for i_batch, sample_batched in enumerate(dataloader):
    ...

Image grid

We often want to display a grid of images to show samples for the training or testing images. torchvision.utils.make_grid a grid to be displayed.

def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data
# inputs contains 4 images because batch_size=4 for the dataloaders
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

Display model result

In the code below, we take in a model, make predictions and display the images with the result:

def visualize_model(model, num_images=6):
    images_so_far = 0
    fig = plt.figure()

    for i, data in enumerate(dataloaders['val']):
        inputs, labels = data
        inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())

        outputs = model(inputs)
        _, preds = torch.max(outputs.data, 1)

        for j in range(inputs.size()[0]):
            images_so_far += 1
            ax = plt.subplot(num_images//2, 2, images_so_far)
            ax.axis('off')
            ax.set_title('predicted: {}'.format(class_names[preds[j]]))
            imshow(inputs.cpu().data[j])

            if images_so_far == num_images:
                return